Code Division Multiple Access

- Airspan uses Direct Sequence Spread Spectrum Code Division Multiple Access (SS-CDMA) modulation on the Airinterface.
- CDMA is a technique that allows multiple communication channels to share the same designated segment of Radio spectrum.
- SS-CDMA uses specialised codes, shared by the Subscriber Terminal and the Central Terminal, to modulate the channels.
- Most of the initial work for the commercial application of CDMA has been for the North American Cellular/PCS market.
 - Airspan implements a version optimized for Wireless Fixed Access
- CDMA offers advantages over techniques such as FDMA and TDMA for Wireless Fixed Access.

Multiple Access Structures

CDMA Analogy

Single Conversation
(Link)
in one Language
(One CDMA Code)

A Few Simultaneous
Conversations
(Links)
Each in a Different Language
(CDMA Code Sets)

Many Simultaneous
Conversations
(Links)
Each in a Different
Language
(CDMA Code Sets)

Background Noise

Basic Spread Spectrum Principle

Correlator recovers signal using the same PN code that spread the Traffic Channel.

Signal turned into RF and radiated over Air Interface where interference effects the wanted signal.

Orthogonal Coding

- Key to CDMA is application of Orthogonal Codes.
- Spreading of the User signal is performed using PN (Psuedo Random Noise) codes.
- Use of "Orthogonal" codes allows multiple traffic channels to be carried in same RF channels.
- Walsh codes are a mathematical set of sequences that have the function of "Orthonormality", or in other words, if any Walsh is multiplied by any other walsh code the results is null.

Multiple Access (Using CDMA)

Power Control and Link Budget

- Receiver Level set at -95dBm to provide link BER of better than 1 x 10⁻⁷
- All Subscriber Terminals Power controlled by Central Terminal to maintain a constant received level at Central Terminal
- Transmit Power can be set lower by OA&M command to reduce cell size.
- Radio Path Budget System Release 2.0 is 130dB

CDMA Types

	IS95 (Qualcomm)	N-CDMA (DSC's Airspan)	; •
Application	PCS	Wireless Fixed Access	
RF Channels (B/W)	1.23 MHz	3.5 MHz	
Channel Bit-Rate	9.6kbit/s	To 144kbit/s	More Than One
Processing Gain	21dB	12dB	Flavour of
Processing Delay	>20ms	<1 <i>ms</i>	CDMA.
FEC	1/3	1/2	Airspan CDMA
Interleaving	Yes	Optional	is Optimised for
Code Structure	Quasi Orthogonal	Orthogonal	WFA
Receiver Type	Rake	Coherent	
Synchronized	No	Yes	

CDMA vs TDMA

- CDMA has inherent Processing Gain (from spreading)
 - Hence lower RF Power.
 - Ability to combat Access Noise
- Multi-path creates Access Noise, not Inter-Symbol Interference
- Creates less interference (unlike GSM and other TDMA systems)
- C/I advantage = 10 dB
 - Less susceptible to Interference
 - Allows a better Frequency Re-use (N=3 for Omni, not N=7 like TDMA)
- Lower Processing Delay (<1ms)
- Good BER without Adaptive Equalization

CDMA for Fixed Wireless Access

Fixed Location

- Reduced Multipath Environment
- Subscribers are locked to a given cell -> Easier Teletraffic engineering (Planned GOS %).

Higher Antennas

- Protection against reflections from Local Clutter.
- Reduced Path Loss.

Directional Antennas

 Reduced Interference with other Users / Cells.

No Handover

 System doesn't require mobility, hence no Handover Measurements, i.e. less complexity

Fixed and Mobile CDMA Types are Different